Doxey Primary School

Calculation policy for multiplication and division

This calculation policy has been written alongside the long term plan for Maths in school, which is taken from the White Rose Maths Schemes of Learning.

This policy is written to enable children to become fluent mathematicians; being able to work flexibly, accurately and efficiently. It is expected that children move forwards/backwards between concrete, pictorial and abstract; often using different representations alongside each other in order to embed their conceptual understanding.

More details around the teaching and learning of each operation have been downloaded from the NCETM website. These documents are the NCETM Spines; 1 - addition and subtraction, 2 - multiplication and division and 3 - fractions, which can be found on Sharepoint.

Times Tables objectives; y2: 2,5 and 10 Y3: 3,4 and 8 Y4: 6,7,9,11 and $12 \quad 2$ forms of division- grouping and sharing

Year guidance for multiplication	EYFS/Year 1 Recognising and making equal groups Doubling numbers to 10 (1 to 10 inclusive) Counting in multiples using cubes and other objects in the classroom	Year 2 Redistributing to make equal groups Arrays - showing commutative multiplicaton Doubling (known facts to 100 Multiples of 5)	Year 3 Arrays 2 digit $\times 1$ digit - Grid method using place value counters or base 10 Doubling within 1,000	Year 4 Column multiplication introduced with place value counters (2 and 3 digit multiplied by 1 digit) Doubling numbers beyond 1,000	Year 5 Column multiplication Mainly abstract but might need a repeat of year 4 first (up to 4 digit numbers multiplied by 1 or 2 digit numbers)	Year 6 Column multiplication Abstract methods (multi digit up to 4 digit numbers multiplied by a 2 digit numbers)
Year guidance for division	Sharing objects into groups. Division as grouping e.g. I have 12 sweets and put them in groups of 3 , how many groups? Halving even numbers up to 20	Division as grouping Division as sharing Division within arrays - linking to multiplication	Division with remainder - using times tables facts 2 digit divided by 1 digit using place value counters or base 10	Division with remainder Short division (up to 3 digits by 1 digits concrete and pictorial)	Short division (up to 4 digits by 1 digit number including remainders)	Short division Long division with place value counters (up to 4 digits by a 2 digit remainder) Children should exchange into the tenths and hundredths column too.

Calculation Policy- for multiplication and division
Times Tables objectives; y2: 2,5 and 10 y3: 3,4 and 8 y4: 6,7,9,11 and $12 \quad 2$ forms of division- grouping and sharing

Objective and strategy	Concrete	Pictorial	Abstract
Multiplication Making equal groups Ensure children can identify unequal groups and redistribute to make them equal.	Use manipulatives to create equal groups	Draw and make representations to show equal groupings	$2+2+2+2$
Multiplication Repeated grouping/ repeated addition		Represent this pictorially alongside a bar model	Abstract number line showing 4 jumps of 2 2×4
Multiplication Use arrays to illustrate commutativity	- multi link and other objects can also be used $2 \times 4=4 \times 2$ 2 lots of 4 4 lots of 2	Children to represent the arrays pictorially 2 lots of 4	Children to be able to use an array to write a range of calculations $\begin{aligned} & 8=2 \times 4 \\ & 8=4 \times 2 \\ & 2 \times 4=8 \\ & 4 \times 2=8 \end{aligned}$

Times Tables objectives; y2: 2,5 and 10 Y3: 3,4 and 8 y4: 6,7,9,11 and $12 \quad 2$ forms of division- grouping and sharing

Times Tables objectives; y2: 2,5 and 10 Y3: 3,4 and 8 y4: 6,7,9,11 and $12 \quad 2$ forms of division-grouping and sharing

Division Grouping leading to short division no remainders	$42 \div 3=14$ We are grouping in $3 s$ so we need 3 rows Use place value counters alongside short division method	Children to represpent the place value counters pictorially. Encourage chidlren to count in multiples to divide more efficiently	
Division Sharing leading to short division no remainders	Using place value counters $\quad 42 \div 3=14$ \square \square $10 s$ $1 s$ 10 10 10 $89880^{\circ}$$\square$	Children to represpent the place value counters pictorially	Children to be able to make sense of the place value counters and write calculations to show the process $\begin{aligned} & 42 \div 3 \\ & 42=30+12 \\ & 30 \div 3=10 \\ & 12 \div 3=4 \\ & 10+4=14 \end{aligned}$ Start to include remainders

Times Tables objectives; y2: 2,5 and 10 Y3: 3,4 and 8 y4: 6,7,9,11 and $12 \quad 2$ forms of division-grouping and sharing

Calculation Policy- for multiplication and division

Times Tables objectives; y2: 2,5 and 10 y3: 3,4 and 8 y4: 6,7,9,11 and $12 \quad 2$ forms of division- grouping and sharing

Times Tables objectives; y2: 2,5 and 10 Y3: 3,4 and 8 y4: 6,7,9,11 and $12 \quad 2$ forms of division- grouping and sharing Doubling and Halving

Times Tables objectives; y2: 2,5 and 10 y3: 3,4 and 8 y4: 6,7,9,11 and $12 \quad 2$ forms of division- grouping and sharing

Doubling/halving Using known facts - numbers within 100	Model doubling/halving using diennes If I know that double 4 is 8 I also know that double 40 is 80 If I know that half of 8 is 2, I also know that half of 80 is 40	Representing doubling/halving pictorally	starting to use partitioning - sticks and smiles 41 doubled $=82$ 82 halved $=41$ The smiles recombine the numbers to arrive at the quotient or product.
Doubling/halving numbers within 1,000 Numbers beyond 1,000 including numbers with decimal points	Doubling using place value counters Double 643 $=643 \times 2$ Putting the same quantity out twice Half $1,286=1,286 \div 2$ Use PVC to share into 2 equal groups		Partitioning with 3 digits $643 \times 2=$ double 643 Partitioning numbers with at least 4 digits $\begin{aligned} 1000 \div 2 & =500 \\ 200 \div 2 & =100 \\ 80 \div 2 & =40 \\ 6 \div 2 & =\frac{3}{643} \end{aligned}$

Calculation Policy- for multiplication and division

Times Tables objectives; y2: 2,5 and 10 y3: 3,4 and 8 y4: 6,7,9,11 and $12 \quad 2$ forms of division- grouping and sharing Conceptual variation for multiplication; different ways to ask children to solve 6×23

						Mai had to swim 23 lengths, 6 times a week. How many lengths did she swim in one week. With the place value counters, prove that $6 \times 23=138$	Find the product of 6 and 23$6 \times 23=$$\begin{aligned} & {\left[\begin{array}{l} -1 \\ \mathbf{L} \end{array}=6 \times 23\right.} \\ & 6 \quad 23 \\ & \times \quad 23 \\ & \hline \end{aligned}$	What is the calculation? What is the product?		
23	23	23	23	23	23			100s	10s	Is
										$\begin{aligned} & \hline 000 \\ & 000 \\ & 000 \\ & 000 \\ & 000 \\ & 000 \\ & \hline 0 \end{aligned}$
Conceptual variation for division; different ways to ask children to solve 615 5										
Using the part whole model below, how can you divide 615 by 5 without using short division?						I have $£ 615$ and share it equally between 5 bank accounts. How much will be in each bank account? (sharing) 615 pupils need to be put into 5 groups. How many will be in each group? (grouping)	$\begin{aligned} & 5 \longdiv { 6 1 5 } \\ & 615 \div 5= \\ & \mathbf{i} \mathbf{i}=615 \div 5 \end{aligned}$			

